A.P. Chemistry Summer Homework

Due Friday 8/23/19 (end of 2nd full week of school) google classroom code: kgk775

The goal of the summer homework is to help you prepare by covering material that you need to know in order to understand the information that I will be presenting in class. The notes are on the basic information covered in first year chemistry and should be a review. The list of polyatomic ions are 78 formulas that we need to know by May. We will be using them all year, so they are extremely important to know. You will need to know them all by memory **by the end of the first quarter.** We will be using the scientific names of many compounds and molecules throughout the year and you must be able to name the basics. Complete the review problems provided on both worksheets.

Materials Needed

- Textbook: Zumdahl & Zumdahl, Chemistry A.P. Edition
 - Zumdahl, Steven S., and Susan A. Zumdahl. *Chemistry*. Belmont, CA: Brooks/Cole, Cengage Learning, 2014. Print.
- 3- ring binder
- Scientific calculator.
 - Recommended calculator: Texas Instruments TI-30X IIS Scientific Calculator, 10-Digit LCD

Summer Coursework Outline

- Part A: Chapter 2 notes
- Part B: Nomenclature worksheet
- Part C: 78 common ions flashcards

Part A: Chapter 2 Notes

Read chapter 2 in the textbook (pgs 43-69) and take notes on the following pages please follow the format provided below. We will be using cornell style notes to help prepare. If you are unfamiliar with cornell notes please check the format provided below.

Section 1: Include 3 questions based on the notes that you took in section 2. Write any vocabulary terms included in the notes.

Section 2: Take notes on the reading. Use section titles from the textbook and bullet points to organize your notes notes

Section 3: Summarize the information in section

Part B: Complete Nomenclature Worksheets

Using the textbook and chapter 2 notes, complete the following two attached worksheets. I will be posting tutorials on google classroom if you need additional help.

Part C: Flash Cards

Create 72 flashcards for the list of common ions. Write the name on the front and the formula on the back of the card. We will have weekly quizzes on these ions for the first 4 weeks of school.

Front	Back
Acetate	C ₂ H ₃ O ₂ -

From the table:		lons to Memo	orize
Cations	Name	Cations	Name
H*	Hydrogen	Ag*	Silver
Li ⁺	Lithium	Zn ²⁺	Zinc
Na*	Sodium	Hg22*	Mercury(I)
K⁺	Potassium	NH₄ ⁺	Ammonium
Rb⁺	Rubidium		
Cs*	Cesium		
Be ²⁺	Beryllium	Anions	Name
Mg ²⁺	Magnesium	NO ₂	Nitrite
Ca ²⁺	Calcium	NO ₃	Nitrate
Ba ^{2*}	Barium	SO32.	Sulfite
Sr ²⁺	Strontium	SO42	Sulfate
Al ³⁺	Aluminum	HSO4	Hydrogen sulfate (bisulfate)
		OH.	Hydroxide
Anions	Name	CN ⁻	Cyanide
H.	Hydride	PO43-	Phosphate
F'	Fluoride	HPO ₄ ²	Hydrogen phosphate
CI	Chloride	H ₂ PO ₄	Dihydrogen phosphate
Br	Bromide	NCS.	Thiocyanate
ſ	lodide	CO32-	Carbonate
0 ²⁻	Oxide	HCO ₃	Hydrogen carbonate (bicarbonate)
S ²⁻	Sulfide	CIO.	Hypochlorite
Se ²⁻	Selenide	CIO2	Chlorite
N ³⁻	Nitride	CIO3	Chlorate
P ³⁻	Phosphide	CIO4	Perchlorate
As ³⁻	Arsenide	BrO'	Hypobromite
Type II Cations	Name	BrO ₂	Bromite
Fe ³⁺	Iron(III)	BrO ₃ ⁻	Bromate
Fe ²⁺	Iron(II)	BrO ₄	Perbromate
Cu ²⁺	Copper(II)	10.	Hypoiodite
Cu⁺	Copper(I)	IO ₂	iodite
Co ³⁺	Cobalt(III)	IO ₃	iodate
Co ²⁺	Cobalt(II)	IO ₄	Periodate
Sn⁴*	Tin(IV)	C ₂ H ₃ O ₂	Acetate
Sn ²⁺	Tin(II)	MnO₄ ⁻	Permanganate
Pb⁴⁺	Lead(IV)	Cr ₂ O ₇ ²	Dichromate
Pb ²⁺	Lead(II)	CrO ₄ ²	Chromate
Hg ^{2*}	Mercury(II)	02 ²	Peroxide
		C2O42-	Oxalate
		NH ₂	Amide
		BO33-	Borate
		S ₂ O ₃ ²	Thiosulfate

Naming Molecular Compounds Chem Worksheet 9-2

Name ____

A **molecular compound** is a group of atoms held together by a covalent bond. Compounds made entirely of non-metals are generally molecular compounds. Carbon tetrachloride, CCl_4 , is an example of a molecular compound. When naming these compounds prefixes are used to denote how many of each atom is bonded in the compound. However, the prefix *mono-* is not used with the first element in the compound, even if there is only one element. The ending of the second element in the compound is always changed to *-ide*, in the same way the ending is changed for monatomic anions.

Dalas fan namine Malaurlan Cammann da		Naming Prefixes	
Rules for naming Wolecular Compounds		1	mono-
		2	di-
1. Name the first element using the element's full name	e.	3	tri-
2. Name the second element using the $-ide$ ending.		4	tetra-
		5	penta-
3 Use prefixes to tell how many of each element is pre-	esent	6	hexa-
(do not use the prefix more, on the first element)		7	hepta-
(uo not use the prenx <i>mono-</i> on the first element).		8	octa-
		9	nona-
		10	deca-

rus pentoxide
toms and five oxygen atoms: P_2O_5
orine atoms: iodine heptafluoride and that the ending of fluorine is changed to <i>-ide</i> .)
orine atoms: iodine hep it and that the ending of fluorine is changed to <i>-ide</i> .)

Fill in the following table with the missing information.

	Formula	Name
1.	SO_2	
2.		Sulfur trioxide
3.	N_2O_4	
4.		Chlorine dioxide
5.	P_4O_{10}	
6.		Carbon disulfide
7.	NO_2	
8.	N_2Cl_4	
9.		Xenon difluoride
10.	S_2Cl_2	
11.		Iodine trichloride
12.	P_2S_5	

	Formula	Name
13.	SF_6	
14.		Tetraphosphorus hexasulfide
15.	SeO ₂	
16.		Ammonia
17.		Boron trichloride
18.	N ₂ O	
19.	BrF ₅	
20.		Carbon dioxide
21.		Carbon monoxide
22.	ClF_3	
23.		Iodine monochloride
24.	CH_4	

Naming Ionic Compounds Chem Worksheet 8-2

An **ionic compound** is a combination of oppositely charged ions. Ionic compounds generally contain a metal bonded to a non-metal (or non-metals). When naming ionic compounds we simply name the cation (the positive ion) then the anion (the negative ion). The cations generally retain the name of the element, so Na^+ is named sodium. The **monatomic anions** are formed when a non-metal gains an electron and these ions have an –ide ending, so S^{2^-} is named sulfide. There are a group of **polyatomic ions** as well that have their own unique names. A list of these appears below.

Some metals can form more than one positive ion. Copper for example forms Cu^{1+} and Cu^{2+} ion. These ions are named using Roman numerals: copper (I) and copper (II) respectively. Most metals that form more than one type of cation are found in the transition metal family or below the non-metals in the *p*-block.

Rules for naming Molecular Compounds

- 1. Name the positive ion. Most cations have the same name as their elements.
- 2. Name the negative ion. Monatomic anions have an –ide ending. Polyatomic anions names' must be memorized.
- 3. If the positive ion is a transition metal or located on the right side of the table it may have more than one charge. In this case use Roman numerals to designate the charge.

Exa	mples		
Nai	ne the following	compounds:	
	Formula	Name	
	NaCl	Sodium chloride	
	K ₂ S	Potassium sulfide	
	MgSO ₄	Magnesium sulfate	
	Mn(OH) ₂	Manganese (II) hydroxide	

Write the names for the following ionic compounds.

	Formula	Name
1.	Li ₂ S	
2.	KF	
3.	Mg_3N_2	
4.	Ca(OH) ₂	
5.	$Ba(NO_3)_2$	
6.	CuCl ₂	
7.	PbO	
8.	ZnF_2	
9.	$NaC_2H_3O_2$	
10.	SrCO ₃	
11.	CrSO ₄	
12.	Na ₃ PO ₄	

Formula	Name
CaBr ₂	
Ni(CN) ₂	
$Al(NO_3)_3$	
Sn(OH) ₂	
HgI ₂	
$Fe_2(SO_4)_3$	
$Ca(C_2H_3O_2)_2$	
TiCl ₃	
KClO ₃	
ZnCO ₃	
NaHCO ₃	
$Co(HSO_4)_2$	
	$\begin{tabular}{ c c c } \hline Formula \\ \hline CaBr_2 \\ \hline Ni(CN)_2 \\ \hline Al(NO_3)_3 \\ \hline Sn(OH)_2 \\ \hline HgI_2 \\ \hline Fe_2(SO_4)_3 \\ \hline Ca(C_2H_3O_2)_2 \\ \hline TiCl_3 \\ \hline Ca(C_2H_3O_2)_2 \\ \hline TiCl_3 \\ \hline KClO_3 \\ \hline ZnCO_3 \\ \hline NaHCO_3 \\ \hline Co(HSO_4)_2 \\ \hline \end{tabular}$

© John Erickson, 2006

WS8-2NamingIonicComp